META: Multi-resolution Framework for Event Summarization
نویسندگان
چکیده
META: Multi-resolution Framework for Event Summarization Report Title Event summarization is an effective process that mines and organizes event patterns to represent the original events. It allows the analysts to quickly gain the general idea of the events. In recent years, several event summarization algorithms have been proposed, but they all focus on how to find out the optimal summarization results, and are designed for one-time analysis. As event summarization is a comprehensive analysis work, merely handling this problem with a single optimal algorithm is not enough. In the absence of an integrated summarization solution, we propose an extensible framework – META – to enable analysts to easily and selectively extract and summarize events from different views with different resolutions. In this framework, we store the original events in a carefully-designed data structure that enables an efficient storage and multiresolution analysis. On top of the data model, we define a summarization language that includes a set of atomic operators to manipulate the meta-data. Furthermore, we present 5 commonly used summarization tasks, and show that all these tasks can be easily expressed by the language. Experimental evaluation on both real and synthetic datasets demonstrates the efficiency and effectiveness of our framework. Read More: http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.70 Conference Name: Proceedings of the 2014 SIAM International Conference on Data Mining Conference Date: May 01, 2014 META: Multi-resolution Framework for Event Summarization Yexi Jiang, Chang-Shing Perng, Tao Li Florida International University IBM T.J Watson Research Center
منابع مشابه
Exploring events and distributed representations of text in multi-document summarization
In this article, we explore an event detection framework to improve multi-document summarization. Our approach is based on a two-stage single-document method that extracts a collection of key phrases, which are then used in a centrality-as-relevance passage retrieval model. We explore how to adapt this singledocument method for multi-document summarization methods that are able to use event inf...
متن کاملExploiting aspectual features and connecting words for summarization-inspired temporal-relation extraction
This paper presents a model that incorporates contemporary theories of tense and aspect and develops a new framework for extracting temporal relations between two sentence-internal events, given their tense, aspect, and a temporal connecting word relating the two events. A linguistic constraint on event combination has been implemented to detect incorrect parser analyses and potentially apply s...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملMeta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain
In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...
متن کاملMetadata-Aware Measures for Answer Summarization in Community Question Answering
This paper presents a framework for automatically processing information coming from community Question Answering (cQA) portals with the purpose of generating a trustful, complete, relevant and succinct summary in response to a question. We exploit the metadata intrinsically present in User Generated Content (UGC) to bias automatic multi-document summarization techniques toward high quality inf...
متن کامل